Advanced Data-driven Techniques for Mining Expertise

Milena Angelova, Veselka Boeva¹ and Elena Tsiporkova²

- 1 Blekinge Institute of Technology, Karlskrona, Sweden
- 2 Sirris, The Collective Center for the Belgian technological industry, Brussels, Belgium

Milena Angelova

Ph.D. student at Technical University of Sofia, Plovdiv branch

Contacts:

Email: mangelova@tu-plovdiv.bg

<u>LinkedIn:</u> https://www.linkedin.com/i n/milena-angelova-7254966a

Introduction

- PubMed data
- >Expert representation
 - Expertise Retrieval
 - Expert finding
 - Expert profiling
- Identification of subject experts
 Resolve the problem with ambiguity
- > Weighting method for assessing of expertise
- > Estimate the expertise similarity between experts
- Formal Concept Analysis
- Evaluation metrics
- Results
 - > Weighting of expertise
 - FCA based expert clustering

PubMed data

The data needed for constructing the expert profiles could be extracted from various Web sources.

Expertise Retrieval

The task of finding the right person with the appropriate skills and knowledge with respect to a topic.

For example, given a textual topic (e.g., "Expertise Retrieval"), rank experts in descending order of expertise.

Expert profiling and

Expert finding

- Expert finding: Expert finding experts are the task of finding the right person with the appropriate skills and knowledge: "Who are the experts on topic X?"
- Expert profiling: While the task of expert finding is concerned with finding experts given a particular topic, the task of experts profiling turns around and asks "What topics do a person know about?"
- For instance, Stanford part-of-speech tagger can be used to annotate the different words.
 ROOT

Identification of subject experts An expert profile can be associated with information that includes: name, e-mails, address, affiliation, a list of publications, co-authors and etc.

Personal data = { e-mails, name, affiliation, co-authors ... } List of keywords = { k_{i1} , k_{i2} , ... k_{in} }, where i is i = 1, 2, 3, ... n

The problem with ambiguity

- The expert's personal data can be used to resolve the problem with ambiguity. This problem refers to the fact that multiple profiles may represent one and the same person.
- Dynamic Time Warping based approach to deal with the ambiguity issue.

Weighting method

> There is no standard or absolute definition for accessing expertise.

- Weighting method assess the levels of expertise of an expert to the domain-specific topics
- \geq Each keyword k_{ii} in expert i is associated with a weight w_{ii}
- Each expert can be presented by two components:
 - > a list of describing keywords
 - a vector of weights

Expertise similarity

- > It is a complicated task for calculation of expertise similarity.
- Similarity between two expertise profiles as a strength of the relations between the semantic concept associated with the keywords of two compared profiles.
- > Take the similarities between any pair of keywords
- Definition of semantic similarity between corresponding keywords:

$$S_{ij} = \sum_{l=1}^{p_i} \sum_{m=1}^{p_j} W_{lm} \cdot s(k_{il}, k_{jm}),$$

Finding Similar Experts

A small number of examples who have been used to work on similar problems

- For example , find the experts with the required expertise by entering the name of example expert and system will return a list of similar experts with close expertise
- Domain of interest can be presented by several preliminary specified subject categories and then the experts can be grouped with respect to this categories

Formal Concept Analysis

- FCA is a mathematical classification technique
 - > Helps discover meaningful data in binary relations
 - > Can be visualized with Concept Lattices
 - Input: A context <O, A, R>
 - O is a set of objects
 - A is a set of attributes
 - R is a binary relation between O and A

>Mapping:

> Common attributes of a set of objects:

$$CA(O'\subseteq O) = \{a \in A | \forall o \in O': (o, a) \in R\}$$

> Common objects of a set of attributes:

$$CO(A' \subseteq A) = \{ o \in O | \forall a \in A' : (o, a) \in R \}$$

> Output: Concepts s.t.
$$\begin{cases} CA(O') = A' \\ CO(A') = O' \end{cases}$$

Formal Concept Analysis A formal context consists of the set of the n experts, the set of main categories { C₁, C₂, ..., C_k}

- > The formal concept is defined as a pair (X, Y) , where:
 - > X \subseteq of experts and Y \subseteq of categories , \forall expert \in \forall area in Y
 - ≻∀ expert ∉
 - *X*, there is a subject area in Y that does not contatin that expert
 - ➤ V subject area that is not in Y, there is an expert in X who is not associated with the area
- The concept lattice represents a subset of experts belonging to a number of subject areas
- The set of all concepts partitions the experts into a set of disjoint expert areas

Evaluation metrics

The similarity between two different expertise retrieval results, it can be assessed by:

➢ Resemblance r

$$r(S'_i, S_i) = |S'_i \cap S_i| / |S'_i \cup S_i|,$$

Containment c

 $c(S'_i) = |S'_i \cap S_i|/|S'_i|$

Silhouette Index is defined as:

$$s(C) = 1/m \sum_{i=1}^{m} (b_i - a_i) / \max\{a_i, b_i\},$$

Data extraction and preprocessing Extracted a set of 4343 Bulgarian authors from PubMed

- > After resolving the problem with ambiguity they are reduced to 3753 different researches.
- Each author is represented by a list of MeSH headings and a vector of weights

Results – Weighting expertise

Experts	MeSH headings			
1	Kidney Transplantation; Liver Transplantation			
2	Health Behavior			
3	Drinking; Health Behavior; Health			
	Knowledge, Attitudes, Practice; Program Evaluation	Experts	MeSH heading weights	
4	Models, Biological; Temperature; Models, Neurological; Water	1	0.5; 0.5	
5	Computer Simulation: Models Molecular:	2	1	
5	Protons; Thermodynamics; Molecular	, ir 3 0.25; 0.25; 0.25; 0.25	0.25; 0.25; 0.25; 0.25	
	Conformation	4	0.166; 0.333; 0.166; 0.333	
6	Vibration; Models, Molecular; Infrared Rays; Hydrogen Bonding	5	0.285; 0.285; 0.142; 0.142; 0.142	
7	Monte Carlo Method; Models, Theoretical; Phase Transition; Thermodynamics	6	0.5; 0.166; 0.166; 0.166	
		7	0.428; 0.285; 0.142; 0.142	
8	Photosynthesis; Quantum Theory	8	0.75; 0.25	
9	Health Behavior; Decision Support Techniques;(more than 20 MeSH terms)	9	0.022;; 0.045; ; 0.068; ; 0.25	
10	Polymorphism, Genetic	10	1	
Table 1 Expert MeSH heading profiles.		Table 2 Expert MeSH heading weights.		

Results – FCA based expert clustering

Category label	Category name	Number of authors		
А	Anatomy	45	-	Number
В	Organisms	101	United categories	of
С	Diseases	68	onned edtebones	authors
D	Chemicals and Drugs	158	{G N}	106
E	Analytical, Diagnostic and Therapeutic Techniques and Equipment	663	{E, N}	55
F	Psychiatry and Psychology	97	{C, G}	59
G	Phenomena and Processes	797	{E, L}	36
н	Disciplines and Occupations	38	{F, N}	23
Т	Antropology, Education, Socialogy and Social	14	{F, I}	12
	Phenomena		{E, G, N}	56
J	Tehnology, Industry, Arguculture	20	{E, H, J, L}	8
к	Humanities	2	{G H I N}	6
L	Information Science	37		11
М	Named Groups	1	{E, G, I, L, N}	11
N	Health Care	125	{F, G, H, I, N}	7

Table 3 Number of authors partitioned into the main MeSH categories (singleton concepts).

Table 4 Number of authors partitioned into united MeSHcategories (non-singleton concepts)

Thank you for your attention!

