

Evaluation of Two Level Classifier for Predicting Compressor Failures in Heavy Duty Vehicles Yuantao Fan, Pablo De Moral & Slawomir Nowaczyk SAIS 2017 workshop, 15 - 16 May

Objective & Motivation

- Predictive maintenance for heavy duty vehicles
 - Predict machine failure
 - On-board sensor data
- Avoid unplanned stops
 - Result in extra damage to other components
 - Waiting time in workshop
 - Fail to reach delivery deadline & lose customers/reputation
 - Accident that cause casualties

Overview

- Applied supervised machine learning techniques (a two level classifier) to predict compressor failures in heavy duty trucks
 - Logged Vehicle Data (LVD)
 - Existing resources (data from deployed vehicles)
 - Preliminary results

Data

- Logged Vehicle Data (LVD) Sensor readouts gathered at service / by Telematics
- Vehicle Service Records (VSR) Service records of Volvo Vehicles

LVD (1046 Trucks, 169 features, 2yrs)

- Configuration & specification (93 categorical)
- Aggregated sensor readings (76 numerical)
 - Mean & accumulated values
 - Vehicle (truck) level: Mileage, speed statistics
 - Component level: average duty cycles

Challenges

- Missing values
 - Aggregated data: More than 80%
 - Workshop visit (up to 76 parameters)
 - Telematics (up to 10 parameters)
 - Categorical data (configuration): 3.2%
 - Heterogeneous fleet
 - E.g. Cruise control, Contract type
- Unbalanced data set
 - 115 (out of 1046) vehicles with compressor failures
 - 10% vehicles are faulty
- Uneven time intervals of readouts

Data preprocessing

- Imputation for aggregated data
 - Linear interpolation
 - E.g. Date, mileage
- Categorical data
 - Transform into binary features
- Vehicle has compressor failures
 - Keep data until first failure occurs

Classifier developed by Prytz et al. ^[1,2]

- Prediction Horizon & data labeling
- Vehicle-wise cross-validation

[1] Rune Prytz. Machine learning methods for vehicle predictive maintenance using o-board and on-board data. Licentiate thesis, Halmstad University Press, 2014.

[2] Rune Prytz, Slawomir Nowaczyk, Thorsteinn Rögnvaldsson, and Stefan Byttner. Predicting the need for vehicle compressor repairs using maintenance records and logged vehicle data. Engineering applications of articial intelligence, 41:139{150, 2015.

Classification results

Classification results

Hierarchical classification

 Two level class hierarchy Readout Vehicle prone to Healthy Vehicle fault Maintenance No maintenance needed so far required

Hierarchical classification

- Two level class hierarchy
- Ist level classifier
 - Identify vehicles
 that prone to
 failures

Ist level classifier

- Readouts were labeled based on whether a vehicle had compressor faults
- Predict whether a vehicle is prone to compressor faults
 - Based on prediction outcome of all readouts from target vehicle
 - Warning
 - Majority voting

Hierarchy classification

 Two level class hierarchy Readout • Ist level classifier Identify vehicles that prone to Vehicle prone to **Healthy Vehicle** fault failures • 2nd level Maintenance – Predict when No faults so far required maintenance is needed

2nd level classifier

• Trained using readouts only from Vehicles with compressor failures

- Prediction Horizon of 90 days

• Predict when maintenance is needed for vehicles that are prone to faults

Preliminary Results (AUC)

	Single level approach	Two level approach
LDA	0.72 ± 0.10	0.66 ± 0.12
Random Forest	0.76 ± 0.10	0.78 ± 0.08

Conclusion & Future Work

- The AUC of proposed two level classifier is similar to the single level classifier
- Future work
 - Construct features
 - Representation learning: e.g. Capture aggregation patterns of numerical parameters for Ist level classifier
 - Balance the dataset
 - Oversampling the minor class (in feature space)
 - Improve Imputation method
 - Expert knowledge based models
 - Evaluation method for predictive maintenance

